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Gas-dynamic bearings that provide adequate carrying capacity without special injection 
of gas are widely employed in engineering. The gas flow through the working gap is created 
by grooving the part of the surface adjacent to one of the boundaries. The rest of the sur- 
face is smooth. 

Assuming that the density of the grooves on the grooved part is large, the equation for 
the average pressure can be employed in the calculations [i]. This is a partial differential 
equation of the elliptic type, and a boundary-value problem of the first kind is formulated 
for it. The solution, however, has some properties that are characteristic for equations of 
the hyperbolic type, since it is obvious from physical considerations that the flow rate 
should largely be determined by the grooved part. 

This paper is concerned with clarifying how the gas flow through the working gap is 
formed and how the parameters of the grooves affect the pressure and load distributions. 
An asymptotic expansion with respect to the compressibility parameter A (A § ~) is constructed. 
The gas flow rate in the limit A § ~ is determined completely by the parameters of the grooves 
at the input boundary and is of the order of A in the isothermal case; the pressure in the 
shaped part is of the order of unity. On the smooth part the pressure is of the order of 
A I/2. The carrying capacity, determined from the asymptotic solution, is compared with the 
value determined by direct numerical solution of the starting problem for a spherical bearing. 

i. We shall study the gas flow in a thin working gap in a sliding bearing (Fig. i), 
whose top surface rotates around the syrametry axis of the bearing with an angular velocity 
m. The stationary equation for the pressure in the thin gas layer (Reynolds equation) for 
a polytropic process has the form 
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( s u m m a t i o n  o v e r  k ) .  Here  •  i i s  t h e  i n d e x  o f  t h e  p o l y t r o p e ;  U~ i a r e  t h e  p h y s i c a l  compo- 
n e n t s  o f  t h e  l o c a l  r o l l i n g  v e l o c i t y  v e c t o r  ( t h e  h a l f - s u m  o f  t h e  v e l o c i t i e s  o f  t h e  s u r f a c e s ) ;  
h '  i s  t h e  f i l m  t h i c k n e s s ;  p '  i s  t h e  p r e s s u r e ;  x ' z  and x '2  a r e  c u r v i l i n e a r  c o o r d i n a t e s ,  de -  
t e r m i n i n g  t h e  p o s i t i o n  o f  a p o i n t  on t h e  s u r f a c e s  s e p a r a t e d  by t h e  w o r k i n g  gap ;  g , i k  and ' g i k  
are the components of the metric tensor in curvilinear coordinates associated with one of 
the surfaces (g' = g~'ig0'2 - g~'~); and, ~ is the dynamic coefficient of viscosity. We intro- 
duce the characteristic scales Pa, h0, L0, and U 0 for the pressure, thickness, length, and 
velocity, respectively, and the scales L l and L 2 for the coordinates x' i and x '2. We trans- 
form to dimensionless variables according to the formulas x'l----xlL1, x'2 "-x~L2, P ' =  PPa, h ' =  
hho, U/~= i UjUo, ds'= dsL o (ds' is a differential with the dimensions of length). In these 
variables the starting equation assumes the form 
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= ~ g , g = gng.,_,z-- g',',, and A =  ~2~LoUo/(hgp,~) i s  t h e  c o m p r e s s i b i l i t y  
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To increase the pressure in the gap, part of one surface is grooved. The part of the 
surface occupied by the grooves is hatched in Fig. i. We assume that the grooves are made 
on the inner (stationary) surface. In [i] Whipple's equation for the pressure averaged over 
the grooves was derived by an asymptotic method of two-scale expansions, analogous to the 
method of [2]: 

0 9 
c~OX 1 (<ql> Vg)  + ~ (<q'> V g )  = O, 

(qi> = ApUliA t _ p~lU a__s Gih A1 = U} <h-2> 
Ox k ' ] / ' ~  <h-3>' ( i. 2) 

Ag U ~ U} gt2 ('<h-,> / ,  G n ,f in G 12 = G 21 gla 
= V'/-----g22 <h> + V~ gll k~ <h> ] = <h_3>, = <h_3---~, 

(gu)2 (<h3> <h~3S). 

Here <y> is the value of y averaged over the grooves (more accurately, over the fast coor- 
dinate, directed across the grooves). In the derivation of Eq. (1.2) the coordinate system 
was chosen so that the x 2 is oriented along the grooves. 

For the sliding bearing shown in Fig. I, U~ ~ O, Uf > O, g12 > 0 (and therefore g12 < 
0) .  The boundary  c o n d i t i o n s  f o r  ( 1 . 2 )  a r e :  P ~ = ~ = P ~ ( X a ) ,  p[x2=x~=p~ p(O, x ~) = p(2~, x2). On 

t h e  boundary  x 2 = x~, s e p a r a t i n g  t h e  smooth and shaped r e g i o n s ,  t h e  p r e s s u r e  and t h e  compo- 
n e n t  o f  t h e  f l ow  normal  t o  t h e  boundary  a r e  r e q u i r e d  t o  be c o n t i n u o u s ;  t h e  l a s t  c o n d i t i o n  i s  
e q u i v a l e n t  t o  c o n t i n u i t y  o f  <q2>. The e n t i r e  r e g i o n  o c c u p i e d  by t h e  l u b r i c a n t  i s  d e t e r m i n e d  
by t h e  i n e q u a l i t i e s  O ~ x l ~ 2 n ,  x ~ x 2 ~ x ~ .  

The solution of Eq. (i.i) in the limit h + ~ is presented in [i, 3]. We shall construct 
by the method of joined asymptotic expansions [4] the solution of the problem for Eq. (1.2) 
in the limit A + ~. We divide the region of the solution (Fig. 2) into three subregions. 
We assume that the pressure is of the order of unity in the regions I and III and of the 
order of Au/(u+~) in region II. The exponent ~/(~ q- i) is obtained from the condition that the 
orders of <q=> be the same in regions II and III. We shall assume that the widths of the 
regions I and II are of the order of unity, while region III is a boundary layer and its width 
is asymptotically small. 

Let us examine the region I. We substitute the expansion p = px(x ~, x ~) + o(I) into 
Eq. (1.2) and, taking into account the fact that the size of this region is of the order of 
unity, we obtain in the leading order 

a l ]/'-2Al.~/,q o (]/-gA,pl/Z) = O. ( 1 . 3 )  
" ~  ~ ~ ~, j + O.---- ~ 

We i n t r o d u c e  in  t h e  r e g i o n  I I I  t h e  i n t e r i o r  v a r i a b l e  ~=  A (x 2 ~ x's) , where x~ i s  t h e  x 2 
c o o r d i n a t e  o f  a p o i n t  i n  t h e  r e g i o n  I I I .  The e q u a t i o n  f o r  t h e  p r e s s u r e  in  t h i s  r e g i o n  i s  

( x . ,  , - j = o .  ( 1 . 4 )  

Integrating it we find the solution in quadratures: 
P3 
f a-" (x 1, (1 .5 )  d 1Ix A 2 G 22 (x 1, x;) ;1' 

o t - - z -  I~/ " 
~a 3 

536 



where f~ is the constant of integration of Eq. (1.4) with respect to G, and p~ = P31~=0. In 
the limit N § -~ the solution (1.5) must approach, by virtue of the joining, the limiting 

value pi(x i, x~). One can see from (1.5) that this is possible only if]3=A~(xi, x~) -~l• txi, x~); 
in this case the integral on the left side converges for P3 = Px( xl, x~). Since Px > 0 and 
A 2 > 0 (this inequality will be proven below), f3 > 0. For D = Ds = A(x~ - x~) the condition 
of continuity of the pressure is satisfied, i.e., 

P3 ( xl, Us) = A~/(• (x a, x~). ( i .  6) 

The l e a d i n g  p a r t  o f  t h e  i n t e g r a l  ( 1 . 5 )  f o r  l a r g e  v a l u e s  o f  p~ e q u a l s  P3- For  t h i s  r e a s o n  i t  
G~fx 1 x2~ 

f o l l o w s  f rom ( 1 . 5 )  and ( 1 , 5 )  t h a t  q~ = Az/(~+~) ~ ' ~/ ~ ~-(~i~. ~2-~ P2 i x ,  x~) + o (A • and in  t h e  v a r i a b l e s  
% ' s ]  

of the boundary layer the start of the region II shifts to +=. It follows from (lo4) that 
the component of the flow rate vector <qa> is conserved in the boundary layer, and from (1.2) and 
(1.4) it follows that <#> =AA2p~/*(x ~, x~)+ o(A). 

In the region II, where there are no grooves, the problem is formulated as follows. We 
are required to solve Eq. (i.I) [which can be formally derived from (1.2) with the substitu- 
tion <y> = y] with the above-indicated boundary conditions at x 2 = x~, x x = 0, x I = 2~ and 
with the component of the flow vector <q~> fixed on the boundary x ~ = x$: 

,~h'pll"(g~'~ g22aP~! I = A A 2 p [ / ' I .  ~ + o ( A ) .  
- " t 7 ' +  ~ V  ~ = d  ~-=~ 

S u b s t i t u t i n g  t h e  e x p a n s i o n  o f  t h e  p r e s s u r e  in  t h e  r e g i o n  I I  i n t o  ( 1 . 1 )  and a p p l y i n g  t h e  
b o u n d a r y  c o n d i t i o n s ,  we o b t a i n  t h e  p rob l em  f o r  p~: 

(-VTv~ . ,iA 
e ? i ~ , p ,  )=0, 
,. o, ii 

P2 (0, x ~) = P2 (2n, x2), P2 = (x' ,  x~) = 0. 

From the first equation we have 

where f0(x 2) is an unknown function. 
obtained from (I.i): 

# -- { ] hn(l-~)/x~' h3.11 x / apo 
V g t ~ ~,., , . , -  iJ 2 ~2. ] ,,i g - -Oz2 ],'r'g h 3 p i /" g2i @--~2 + g a x2 t 

I n t e g r a t i n g  i t  o v e r  x 1 and u s i n g  t h e  c o n d i t i o n  p~'(O, x a) = p~(2~ ,  x 2) we f i n d  
2 ~  

0 t ~ ox' o -  I 

I t  f o l l o w s  f rom t h e  s e c o n d  r e l a t i o n  in  ( 1 . 7 )  t h a t  

2 g  

c= ~ l /g (z t  x])A2(xt x~) p]l"(xl, x:)dxl. 
0 

Using t h e  f o r m u l a  ( 1 . 8 )  and ( 1 . 1 0 ) ,  we o b t a i n  an o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n  f o r  t h e  un-  
known f u n c t i o n  f 0 :  

A dl~+l dx 2 + B]o + i = - C ,  

A(x2)=~~ h~VTg ~ 1 / ~ ; )  exl, 

To determine it we shall study the equation for p~ 

= 0 . (1 .9 )  

( i . I 0 )  

(l.il) 
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yf [VgU/~] L ax I/~u}h +g2., dx'. ( I . 1 2 )  

The solution of (1.12) satisfying the fourth condition in (1.7) is 

~o ~ I B dx2'exp 3 A " 4-+1 = _ C "-X exp "-X d Z '  - -  ~ ~ dx ~' 

4 / 
Thus the pressure in the region II in leading order is determined by the formula 

. 1 / g ( x ' ,  x;) x, x 

1"/0<+1) / r i /==' \ \"/("+') 1 /~2, x, 1./(.+,). 

( {  J J �9 . ,, 
• U-x :p dx:' -x xp x x= dx . (1.13) 

We note that in the leading order approximation there was no need to study the boundary 
layer at the boundary x 2 = x02, since the exterior solution satisfied the boundary condition. 

The expression (1.13) contains the quantity pz(x I, x~), which is determined from the 
solution of Eq. (1.3) with the boundary condition on the pressure imposed on the boundary 
x 2 = x. 2. The fact that the boundary layer in the grooved region does not arise at the bound- 
ary x 21= x.~ is a direct consequence of the inequality A 2 > 0. Indeed, let us assume that the 
boundary layer is formed on the boundary x 2 = x~, Then the relation (1.5) willbe satisfied, 
the only difference being that joining occurs in the limit n + 4~. Substituting the value 

of f~ and differentiating (i 5), we obtain dp3 A~ " P~/~--P]I• �9 dN = ~  X- p~<~ . pa can be joined with Pl in 

the limit n + +~ only if P3 -- Pz, since the fact that p~ differs from Pl for some n will 
cause it to grow without bound at infinity. Thus joining is possible only in the limit ~ + 
-~, and this is what caused the boundary layer to form at the boundary x 2 = Xs 2. 

2. We shall now prove the inequality A 2 > 0. The average value of y is found by aver- 

lira ~' 1 ag i n g  > = y _ ~ . j y .  yd~ o v e r  t h e  f a s t  v a r i a b l e  ~. We s h a l l  p r o v e  t h a t  f o r  a s t r i c t l y  p o s i -  

0 

t i v e  f u n c t i o n  y ( ~ ) ,  where  ~ ~ [0, 11, t h e  i n e q u a l i t y  

Q = ? ~  yV+~d~-- yVd~ y~d~ >~0 ( 2 . 1 )  

1 1 

h o l d s .  We t r a n s f o r m  t h e  l e f t  s i d e  i n t o  t h e  f o r m Q = ? ~ f [ ( y v + ~ ( ~ ) - - y v ( ~ ) y ~ ( ~ ) ) d ~ d ~ ,  In  t h e  ex -  
0 0 

p r e s s i o n  o b t a i n e d  we e x c h a n g e  t h e  v a r i a b l e s  o f  i n t e g r a t i o n  and add t h e  two e x p r e s s i o n s :  

1 1 

%'~ _ yV y,;+fi yV+~ 

0 0 

We note that the integrand equals [y~(~)- y~(~)][y~(~)- y~(~)]. Its sign is the same as that of 
the product 7~. The inequality (2.1) is thereby proved. Performing some simple transforma- 
tions, we obtain 

(<yV+~> --  <y';><y~>)%,~ ~> O. ( 2 . 2 )  

If it is assumed in addition that y is a periodic, piecewise-continuous function with 
nonzero support, it can be shown that for 7~ ~ 0 in (2.2) the strict inequality holds. This 
assumption holds for profiles of the film thickness h($). 

Thus setting 7 = i and 8 = -3 we obtain <h-2>/<h-a> - <h> < 0, and therefore A ~ > 0. 

3. We shall construct a solution for a spherical bearing with spiral grooves with purely 
axial displacement, i.e., in the case 8/8x I - 0. We denote the radius of the bearings by R, 
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and its angular rotational velocity by m. Let 8 be the angle measured from the positive 
direction on the axis of rotation, and qJ the longitude, measured in the direction of rota- 
tion. The groove makes an angle a > 0 with the latitude. 

We introduce %----lnltan(0/2)[; then the equation of the line oriented along the groove is 

-~ ~ c o t  ~ - -  c o a s t .  

We i n t r o d u c e  x 2 =  - - ~ ,  x ~ = ~ + X c o t a .  We s e t  L i = 1 ,  i = 1 ,  2 ,  L 0 = R,  U 0 = R w / 2 ;  t h e n  

U~ = i / c o s h x  ~. L e t  t h e  p r e s s u r e  a t  t h e  b o u n d a r i e s  x 2 = x.~, x 2 = x~ e q u a l  a t m o s p h e r i c  p r e s s u r e  

Pa; then pi(xl) = p~ = I. 

The following relations hold: 

1 g~k:_= " sin" T ~  ' g a 
g m : ~  c tg (z  ~ ' ch'- 'x- 

sin ~ a \-- c t g  a ( 3 . 1 )  

g - -  t/(ch4x~), c h - t ~  = s i a  0. 

Tt f o l l o w s  f rom ( 1 : 3 )  t h a t  V-gA2//~'=l/g(xDA~(x'i). The v a r i a b l e  x ~ h e r e  and b e l o ~  i~  o m i t t e d .  

The quantity on the right side of the first relation in (1.7) equals A ' Z ( ~ ) p / ~ ( x ~ ) =  

]/g_((x~) The following expressions are obtained for A(x 2) and B(x 2) in (1.12): A~ (~) V g  (~D" 
2 ~  (ch z~-) ~'+~- (h (x~-))"-% A (x ~') : 

( ~ h ~ / ~ +  ' ~ Ch oh-"+) ,  B (x 2) = -- 2rt• 2 ch-~x ~- k/-- 'T- ' /  ~ " 

A dx ~_ \ ch x ~ ]]  

x ~ /~' \ x 2 

x 0 

The pressure in the smooth part is determined by the formula 

X~ j (3.2) 

A "2 = s in  (z. cos ~(<h-~ - -  <h>). 

Thus in the limit A + ~ the carrying capacity is created primarily by the smooth part. 
The grooves cause the grooved part to drag out the flow by an amount of the order of A. The 
smooth part, however, because of the fact that there is no convective term in the expression 
q2 on it, is a kind of stop. This is what is responsible for the high pressures of the order 
of Ax/( x+o .  

Figure 3 shows the computer calculations of the pressure distribution in the spherical 
support with a constant nominal gap h = 2-10 -6 m, a radius of the spheres R = 9"10 -~ m, • = 
1 (isothermal flow), a = 30041 ' , groove depth in the grooved part Ah=C.10-~m, the relative 
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groove widths 0.603, x I = 0.1455, x~ = 0.6344, x~ = 1.44. The curves 1-5 correspond to A = 
13.7, 41, 136, 957, and 1777; the broken lines correspond to the limiting solution on the 
smooth part. The curves 4 and 5 on this section are virtually identical with the limiting 
curve and are not shown in the figure. 

LCnx[Fsin2~ ( As follows from (3.2), with h = const on the smooth part p _-- A*/2:|-~-?., <h>-- 

<h_~> l Jx~=x~ ] h:~/~ One can see that the pressure and therefore als0 the carrying capacity 

are maximum for ~ =:45 ~ It also follows from the formula that the pressure p reaches the 
maximum value Pmax at x 2 = x~. 

Figure 4 shows the two dependences Pmax(A) (i: the reduced asymptotic solution; 2: the 
result of the computer solution of the complete problem). 

We thank M. A. Galakhov for a discussion of some of the results of this work. 
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STRUCTURE OF SHOCK WAVES IN POROUS IRON AT LOW PRESSURES 

V. N. Aptukov, P. K. Nikolaev, 
and V. I. Romanchenko 

UDC 539.374+624.131 

The interest shown in the study of the behavior of porous materials under shock loading 
is due to their practical application in the explosive compaction of parts [i], their use in 
various types of shock-wave dampers [2], and the possibility such investigation offers for 
realizing a broad range of thermodynamic states in substances [3, 4]. 

The high-pressure region of shock compression, above I0 GPa, has traditionally been stud- 
ied more intensively. This is due to the rapid strides made in shock-wave physics in recent 
years. In the low-pressure region - where the most important mechanical effects are realized 
in terms of the strength and plastic flow of a material in pores - relatively little informa- 
tion has been collected. The data that is available is restricted to isolated materials and 
porosities, and the results are often contradictory [2]. 

The well-known models of the mechanical behavior of porous materials fall into two groups: 
equilibrium models with an explicit p ~ p relation [5, 6], and nonequilibriummodels reflect- 
ing the kinetics of pore collapse [7-10]. 

Here, on the basis of the thermomechanical principles of a continuum with internal state 
parameters, we propose a model of the behavior of porous solids under shock loading. The 
results of mathematical modeling are compared with experimental measurements we made of the 
compression-wave profile in porous iron at different initial porosities (10-40%). The pro- 
files were obtained by means of pressure gauges. 

i. Description of the Model. The mechanics of deformable porous solids are based on 
several hypotheses, the most important of which are the hypothesis of continuity and the 
postulate of macroscopic definability [ii]. 
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